The increasing demand for food production and predicted climate change scenarios highlight the need for improvements in crop sustainability. The efficient use of water will become increasingly important for rain-fed agricultural crops even in fertile regions that have historically received ample precipitation. Improvements in water-use efficiency in Zea mays have been limited, and warrant a renewed effort aided by molecular breeding approaches. Progress has been constrained by the difficulty of measuring water-use in a field environment. The stable carbon isotope composition (δ13 C) of the leaf has been proposed as an integrated signature of carbon fixation with a link to stomatal conductance. However, additional factors affecting leaf δ13 C exist, and a limited number of studies have explored this trait in Z. mays. Here we present an extensive characterization of leaf δ13 C in Z. mays. Significant variation in leaf δ13 C exists across diverse lines of Z. mays, which we show to be heritable across several environments. Furthermore, we examine temporal and spatial variation in leaf δ13 C to determine the optimum sampling time to maximize the use of leaf δ13 C as a trait. Finally, our results demonstrate the relationship between transpiration and leaf δ13 C in the field and the greenhouse. Decreasing transpiration and soil moisture are associated with decreasing leaf δ13 C. Taken together these results outline a strategy for using leaf δ13 C and reveal its usefulness as a measure of transpiration efficiency under well-watered conditions rather than a predictor of performance under drought.
Keywords: Zea mays; carbon isotopes; transpiration efficiency; vegetative phase change; water-use.
© 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.