Perturbations in the uterine luminal fluid composition are detrimental to pregnancy establishment in cattle

J Anim Sci Biotechnol. 2018 Sep 17:9:70. doi: 10.1186/s40104-018-0285-6. eCollection 2018.

Abstract

Background: A major, unresolved issue is how the uterine microenvironment determines pregnancy success in cattle. Before implantation, conceptus development depends on the uterine secretome (i.e., histotroph). Despite its pivotal role, little is known about the dynamics of histotroph synthesis and changes in composition throughout the early diestrus and the relevance to pregnancy establishment. We hypothesize that disturbances on histotroph composition affect the establishment of pregnancy. Aim was to disturb histotroph composition at early diestrus and verify the effects on: (Exp. 1) timing to restore its composition; and (Exp. 2) pregnancy rate after multiple-embryo transfer. Estrous cycle of multiparous Nelore cows were synchronized and estrus was considered d 0 (D0) of the experiments. Disturbance was through flushing each uterine horn with 30 mL of DMPBS and collecting the resulting uterine luminal flushing (ULF) on D1; D4; D7; D1 + D4 + D7. Control group remained not-collected. In Exp. 1, ULF was collected on D7.5 from all animals and used for quantification of total protein concentration and abundance of albumin. In Exp. 2, three in vitro-produced embryos were transferred to the uterine horn ipsilateral to the ovary containing the CL on D7.5 and pregnancy was checked on D25 by ultrasound.

Results: In Exp. 1, ULF collection on D4 or D7 increased (1.5- to 2.2-folds) the total protein concentration and albumin abundance. ULF collection on D1 did not alter (P > 0.10) these endpoints. In Exp. 2, ULF collected on D4 or D7 decreased pregnancy rates to approximately half of that measured in the remaining groups.

Conclusions: Subtle perturbations imposed to the native intrauterine milieu, such as those caused by a single, low-volume collection of ULF, profoundly disturbs intrauterine composition and pregnancy success. At least 4 d were necessary for the uterus to recover its composition and the functional capacity to carry post-implantation gestation.

Keywords: Albumin; Embryo; Histotroph; Protein.