Methanol Electro-Oxidation on Carbon-Supported PtRu Nanowires

J Nanosci Nanotechnol. 2019 Feb 1;19(2):795-802. doi: 10.1166/jnn.2019.15743.

Abstract

One of the key objectives in fuel cell technology is to improve the alcohol oxidation efficiency of Pt-based catalysts. A series of carbon-supported PtRu nanowires with different concentrations of Pt and Ru were prepared for application in methanol oxidation in acid media. The physicochemical properties and electrocatalytic activity of these catalysts during methanol oxidation are function on their structure, morphology and composition. A Pt60Ru40/C catalyst shows the best behaviour towards methanol electro-oxidation allowing decrease the onset potential approximately 0.2 V respect to others PtRu/C synthesised nanowires. The structural modification of Pt by Ru and synergetic character of RuPt are main factors that could contribute to reduction of energy necessary for electro-oxidation process. The Pt and PtRu nanowires have different sizes and distribution on the substrate. The average crystallite sizes, found by XRD, are in the 4.6-5.9 nm range and the lattice parameter is between 0.3903-0.3908 nm. Small differences with the values of the Pt/C catalyst were found. The XPS results show a prevailing presence of metallic Pt and Ru4+ species.