An aptamer based fluorometric assay is presented for fast and accurate detection of staphylococcal enterotoxin B (SEB). It is making use of platinum-coated gold nanorods (AuNR@Pt) and upconversion nanoparticles (UCNPs). The aptamer against SEB is immobilized on AuNR@Pt while the complementary DNA fragment of SEB aptamer is immobilized on UCNPs. As the concentration of SEB increases, the fluorescence of the satellite assembly (AuNR@Pt-UCNPs) is gradually restored. Under the optimized conditions, fluorescence (best measured at excitation/emission wavelengths of 980/543 nm) linearly increases in the 2.0-400 pg·mL-1 SEB concentration range. The limit of detection is as low as 0.9 pg·mL-1 (at an S/N of 3), significantly lower than existing methods. The method was applied to the determination of SEB in spiked milk samples. The average recoveries ranged from 91.2% to 104.6%, confirming the practicality of this method. Graphical abstract Schematic illustration of a fluorometric assay based on inner filter effect (IFE) between platinum coated gold nanorods (AuNR@Pt) and upconversion nanoparticles (UCNPs) for the determination of staphylococcal enterotoxin B (SEB).
Keywords: Aptamer; Fluorescence; Food poisoning; Immunoassay; Inner filter effect; Rapid detection; Staphylococcus aureus; Toxic protein.