Excavatolide-B Enhances Contextual Memory Retrieval via Repressing the Delayed Rectifier Potassium Current in the Hippocampus

Mar Drugs. 2018 Oct 25;16(11):405. doi: 10.3390/md16110405.

Abstract

Memory retrieval dysfunction is a symptom of schizophrenia, autism spectrum disorder (ASD), and absence epilepsy (AE), as well as an early sign of Alzheimer's disease. To date, few drugs have been reported to enhance memory retrieval. Here, we found that a coral-derived natural product, excavatolide-B (Exc-B), enhances contextual memory retrieval in both wild-type and Cav3.2-/- mice via repressing the delayed rectifier potassium current, thus lowering the threshold for action potential initiation and enhancing induction of long-term potentiation (LTP). The human CACNA1H gene encodes a T-type calcium channel (Cav3.2), and its mutation is associated with schizophrenia, ASD, and AE, which are all characterized by abnormal memory function. Our previous publication demonstrated that Cav3.2-/- mice exhibit impaired contextual-associated memory retrieval, whilst their retrieval of spatial memory and auditory cued memory remain intact. The effect of Exc-B on enhancing the retrieval of context-associated memory provides a hope for novel drug development.

Keywords: Cav3.2−/− mice; T-type calcium channel; absence epilepsy; autism spectrum disorder; coral; excavatolide-B; long-term potentiation; memory; potassium current.

MeSH terms

  • Animals
  • Behavior, Animal
  • Calcium Channels, T-Type / genetics
  • Conditioning, Psychological / drug effects
  • Delayed Rectifier Potassium Channels / antagonists & inhibitors*
  • Delayed Rectifier Potassium Channels / metabolism
  • Dendritic Spines / drug effects
  • Diterpenes / pharmacology*
  • Fear / psychology
  • Hippocampus / drug effects*
  • Hippocampus / metabolism
  • Long-Term Potentiation / drug effects
  • Male
  • Memory / drug effects*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Primary Cell Culture

Substances

  • Cacna1h protein, mouse
  • Calcium Channels, T-Type
  • Delayed Rectifier Potassium Channels
  • Diterpenes
  • excavatolide B