Paper Origami-Inspired Design and Actuation of DNA Nanomachines with Complex Motions

Small. 2018 Nov;14(47):e1802580. doi: 10.1002/smll.201802580. Epub 2018 Oct 11.

Abstract

Significant progress in DNA nanotechnology has accelerated the development of molecular machines with functions like macroscale machines. However, the mobility of DNA self-assembled nanorobots is still dramatically limited due to challenges with designing and controlling nanoscale systems with many degrees of freedom. Here, an origami-inspired method to design transformable DNA nanomachines is presented. This approach integrates stiff panels formed by bundles of double-stranded DNA connected with foldable creases formed by single-stranded DNA. To demonstrate the method, a DNA version of the paper origami mechanism called a waterbomb base (WBB) consisting of six panels connected by six joints is constructed. This nanoscale WBB can follow four distinct motion paths to transform between five distinct configurations including a flat square, two triangles, a rectangle, and a fully compacted trapezoidal shape. To achieve this, the sequence specificity of DNA base-pairing is leveraged for the selective actuation of joints and the ion-sensitivity of base-stacking interactions is employed for the flattening of joints. In addition, higher-order assembly of DNA WBBs into reconfigurable arrays is achieved. This work establishes a foundation for origami-inspired design for next generation synthetic molecular robots and reconfigurable nanomaterials enabling more complex and controllable motion.

Keywords: DNA nanotechnology; origami; reconfigurable materials; self-assembly; shape control.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • DNA / chemistry*
  • Nanostructures / chemistry*
  • Nanotechnology / methods*

Substances

  • DNA