Inhibition of Cytomegalovirus Replication with Extended-Half-Life Synthetic Ozonides

Antimicrob Agents Chemother. 2018 Dec 21;63(1):e01735-18. doi: 10.1128/AAC.01735-18. Print 2019 Jan.

Abstract

Artesunate (AS), a semisynthetic artemisinin approved for malaria therapy, inhibits human cytomegalovirus (HCMV) replication in vitro, but therapeutic success in humans has been variable. We hypothesized that the short in vivo half-life of AS may contribute to the different treatment outcomes. We tested novel synthetic ozonides with longer half-lives against HCMV in vitro and mouse cytomegalovirus (MCMV) in vivo Screening of the activities of four ozonides against a pp28-luciferase-expressing HCMV Towne recombinant identified OZ418 to have the best selectivity; its effective concentration inhibiting viral growth by 50% (EC50) was 9.8 ± 0.2 µM, and cytotoxicity in noninfected human fibroblasts (the concentration inhibiting cell growth by 50% [CC50]) was 128.1 ± 8.0 µM. In plaque reduction assays, OZ418 inhibited HCMV TB40 in a concentration-dependent manner as well as a ganciclovir (GCV)-resistant HCMV isolate. The combination of OZ418 and GCV was synergistic in HCMV inhibition in vitro Virus inhibition by OZ418 occurred at an early stage and was dependent on the cell density at the time of infection. OZ418 treatment reversed HCMV-mediated cell cycle progression and correlated with the reduction of HCMV-induced expression of pRb, E2F1, and cyclin-dependent kinases 1, 2, 4, and 6. In an MCMV model, once-daily oral administration of OZ418 had significantly improved efficacy against MCMV compared to that of twice-daily oral AS. A parallel pharmacokinetic study with a single oral dose of OZ418 or AS showed a prolonged plasma half-life and higher unbound concentrations of OZ418 than unbound concentrations of AS. In summary, ozonides are proposed to be potential therapeutics, alone or in combination with GCV, for HCMV infection in humans.

Keywords: artemisinins; half-life; human cytomegalovirus; mouse cytomegalovirus; ozonides; pharmacokinetics.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Antiviral Agents / blood
  • Antiviral Agents / chemistry
  • Antiviral Agents / pharmacokinetics
  • Antiviral Agents / pharmacology*
  • CDC2 Protein Kinase / genetics
  • CDC2 Protein Kinase / metabolism
  • Cell Line
  • Cytomegalovirus / drug effects*
  • Cytomegalovirus / genetics
  • Cytomegalovirus / metabolism
  • Cytomegalovirus Infections / drug therapy*
  • Cytomegalovirus Infections / virology
  • Drug Administration Schedule
  • Drug Evaluation, Preclinical
  • Drug Resistance, Viral / drug effects
  • Drug Resistance, Viral / genetics
  • E2F1 Transcription Factor / genetics
  • E2F1 Transcription Factor / metabolism
  • Female
  • Fibroblasts / drug effects
  • Fibroblasts / pathology
  • Fibroblasts / virology
  • Ganciclovir / pharmacology
  • Gene Expression Regulation
  • Heterocyclic Compounds, 1-Ring / blood
  • Heterocyclic Compounds, 1-Ring / chemistry
  • Heterocyclic Compounds, 1-Ring / pharmacokinetics
  • Heterocyclic Compounds, 1-Ring / pharmacology*
  • Host-Pathogen Interactions / drug effects*
  • Humans
  • Isoenzymes / genetics
  • Isoenzymes / metabolism
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Microbial Sensitivity Tests
  • Retinoblastoma Protein / genetics
  • Retinoblastoma Protein / metabolism
  • Signal Transduction
  • Spiro Compounds / blood
  • Spiro Compounds / chemistry
  • Spiro Compounds / pharmacokinetics
  • Spiro Compounds / pharmacology*
  • Virus Replication / drug effects*

Substances

  • Antiviral Agents
  • E2F1 Transcription Factor
  • E2F1 protein, human
  • Heterocyclic Compounds, 1-Ring
  • Isoenzymes
  • OZ418 compound
  • Retinoblastoma Protein
  • Spiro Compounds
  • CDC2 Protein Kinase
  • CDK1 protein, human
  • Ganciclovir