Keratinocyte growth factor (KGF) plays a central role in wound healing as it induces cell proliferation and motility. The use of growth factors such as KGF is therefore viewed as a promising approach in wound therapy, although effective application remains a major problem because of inactivation and the resulting short half-life of applied growth factors in wound beds. Therefore, the rational of this study was to develop and investigate an innovative strategy to improve wound healing using an in vitro-transcribed modified KGF messenger RNA (mRNA). After transfection of cells, we evaluated the effects of the produced KGF protein on cell migration and reepithelialization of keratinocytes using a scratch assay. The results demonstrate that KGF-mRNA-transfected cells exhibited a high KGF protein release that is sufficient to significantly improve reepithelialization in the performed scratch assays. Transfection with growth factor mRNA therefore seems to be a promising therapeutic strategy, especially for difficult wounds, as it leads to a temporary increase of growth factor expression in the treated wound area without interfering with the DNA of the nucleus, as seen in gene therapeutic applications.
Keywords: cell proliferation; keratinocyte; mRNA; wound healing.