Washing with chlorine bleach leads to high mixing ratios of gas-phase HOCl. Using two methods that are sensitive to surface film composition-attenuated total reflection fourier transform infrared (ATR-FTIR) spectroscopy and direct analysis in real time mass spectrometry (DART-MS)-we present the first study of the chlorination chemistry that occurs when gaseous HOCl reacts with thin films of squalene and oleic acid. At mixing ratios of 600 ppbv, HOCl forms chlorohydrins by adding across carbon-carbon double bonds without breaking the carbon backbone. The initial uptake of one HOCl molecule occurs on the time scale of a few minutes at these mixing ratios. For oleic acid, ester formation proceeds immediately thereafter, leading to dimeric and trimeric chlorinated products. For squalene, subsequent HOCl uptake occurs until all six of its carbon-carbon double bonds become chlorinated within 1-2 h. These results indicate that chlorination of skin oil, which contains substantial carbon unsaturation, is likely to occur rapidly under common cleaning conditions, potentially leading to the irritation associated with chlorinated bleach. This chemistry will likely also proceed with cooking oils, in the human respiratory system which has unsaturated surfactants as important components of lung fluid, and with organic components of the sea surface microlayer.