Sex steroid hormones are major regulators of uterine and placental growth and functions, as well as many other biological processes. To examine the mRNA expression of nuclear estrogen (ESR1 and 2) and progesterone (PGRAB and B) receptors in different compartments of the uterus and placenta, tissues were collected in experiment 1 on days 16, 20, and 28 after natural mating (NAT) and on day 10 after estrus (nonpregnant controls [NP]); and in experiment 2 on day 22 of NAT, and pregnancies established after transfer of embryos generated through mating of FSH-treated ewes (NAT-ET), in vitro fertilization (IVF), or in vitro activation (parthenotes). In experiment 1, ESR1 expression in endometrial stroma (ES), endometrial glands (EGs), and myometrial blood vessels (MBVs), ESR2 in endometrial blood vessels (EBV), PGRAB in ES, and PGRB in ES, EG, and MBV was greater in pregnant than NP ewes depending on the day of pregnancy. The day of pregnancy affected the expression of ESR1 in MBV, ESR2 in EBV and MBV, and PGRAB in ES. In experiment 2, ESR1, PGRAB, and PGRB in EG, but not in other compartments, was greater in NAT-ET than NAT, and PGRB was greater for NAT-ET than IVF. These data demonstrate that ESR and PGR expression differ in pregnant versus NP ewes in selected compartments and was affected by pregnancy stage or embryo origin in selected utero-placental compartments. Thus, sex steroid hormone mRNA expression is differentially regulated in a spatiotemporal manner in the uterus and placenta and is affected by the application of assisted reproductive technology in sheep.
Keywords: Assisted reproductive technology; Laser capture microdissection; Sex steroid receptors mRNA; Sheep; Uterine and placental compartments.
Copyright © 2018 Elsevier Inc. All rights reserved.