Step Sizes and Rate Constants of Single-headed Cytoplasmic Dynein Measured with Optical Tweezers

Sci Rep. 2018 Nov 5;8(1):16333. doi: 10.1038/s41598-018-34549-7.

Abstract

A power stroke of dynein is thought to be responsible for the stepping of dimeric dynein. However, the actual size of the displacement driven by a power stroke has not been directly measured. Here, the displacements of single-headed cytoplasmic dynein were measured by optical tweezers. The mean displacement of dynein interacting with microtubule was ~8 nm at 100 µM ATP, and decreased sigmoidally with a decrease in the ATP concentration. The ATP dependence of the mean displacement was explained by a model that some dynein molecules bind to microtubule in pre-stroke conformation and generate 8-nm displacement, while others bind in the post-stroke one and detach without producing a power stroke. Biochemical assays showed that the binding affinity of the post-stroke dynein to a microtubule was ~5 times higher than that of pre-stroke dynein, and the dissociation rate was ~4 times lower. Taking account of these rates, we conclude that the displacement driven by a power stroke is 8.3 nm. A working model of dimeric dynein driven by the 8-nm power stroke was proposed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Cytoplasmic Dyneins / chemistry*
  • Cytoplasmic Dyneins / metabolism*
  • Dyneins / chemistry*
  • Dyneins / metabolism*
  • Humans
  • Kinetics
  • Microtubules / metabolism
  • Optical Tweezers*
  • Protein Multimerization
  • Protein Structure, Quaternary

Substances

  • Adenosine Triphosphate
  • Cytoplasmic Dyneins
  • Dyneins