Purpose: To examine whether the heterogeneous texture parameters in primary tumor can predict prognosis of patients with non-small cell lung cancer (NSCLC) received surgery after 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET)/X-ray computed tomography (CT).
Procedure: This retrospective study included 55 patients with NSCLC who underwent [18F]FDG-PET/CT before surgery from January 2011 and December 2015. SUV-related (SUVmax and SUVmean), volumetric (metabolic tumor volume [SUV ≥ 2.5], and total lesion glycolysis) and texture parameters (local parameters; entropy, homogeneity, and dissimilarity and regional parameters; intensity variability [IV], size-zone variability [SZV], and zone percentage [ZP]) were obtained. Tumor size, TNM stage, SUV-related, volumetric, and texture parameters were compared between the patients with progression and without progression using Mann-Whitney's U or χ2 test and progression-free survival (PFS) and prognostic significance were assessed by Kaplan-Meier method and Cox regression analysis, respectively.
Results: Nineteen patients eventually showed progression, and 36 patients were alive without progression during clinical follow-up (median follow-up PFS; 23 months [range, 1-71]). The patients with progression showed significantly larger tumor size (p < 0.001), higher IV (p = 0.010), and higher SZV (p = 0.007) than those without progression. PFS was significantly shorter in patients with large tumor size (p = 0.008), high T stage (p = 0.009), high stage (p = 0.013), high IV (p = 0.012), and high SZV (p = 0.015) at univariate analysis. At multivariate analysis, stage (hazard ratio [HR] 1.62, p = 0.035) and IV (hazard ratio 6.19, p = 0.048) were only remained independent predictors for PFS.
Conclusions: The regional heterogeneity texture parameters IV and SZV can predict tumor progression, and IV has the potential to predict prognosis of surgically treated NSCLC patients.
Keywords: Non-small cell lung cancer; SUV; Texture analysis; [18F]FDG-PET/CT.