A new generation of millimeter-wave heterodyne imaging receiver arrays has been developed and demonstrated on the DIII-D electron cyclotron emission imaging (ECEI) system. Improved circuit integration, improved noise performance, and enhanced shielding from out-of-band emission are made possible by using advanced liquid crystal polymer (LCP) substrates and monolithic microwave integrated circuit (MMIC) receiver chips. This array exhibits ∼15 dB additional gain and >30× reduction in noise temperature compared to previous generation ECEI arrays. Each LCP horn-waveguide module houses a 3 × 3 mm GaAs MMIC receiver chip, which consists of a low noise millimeter-wave preamplifier, balanced mixer, and IF amplifier together with a local oscillator multiplier chain driven at ∼12 GHz. A proof-of-principle partial LCP instrument with 5 poloidal channels was installed on DIII-D in 2017, with a full proof-of-principle system (20 poloidal × 8 radial channels) installed and commissioned in early 2018. The enhanced shielding of the LCP modules is seen to greatly reduce the sensitivity of ECEI signals to out-of-band microwave noise which has plagued previous ECEI studies on DIII-D. The LCP ECEI system is expected to be a valuable diagnostic tool for pedestal region measurements, focusing particularly on electron temperature evolution during edge localized mode bursting.