Direct Capture Cross Section and the E_{p}=71 and 105 keV Resonances in the ^{22}Ne(p,γ)^{23}Na Reaction

Phys Rev Lett. 2018 Oct 26;121(17):172701. doi: 10.1103/PhysRevLett.121.172701.

Abstract

The ^{22}Ne(p,γ)^{23}Na reaction, part of the neon-sodium cycle of hydrogen burning, may explain the observed anticorrelation between sodium and oxygen abundances in globular cluster stars. Its rate is controlled by a number of low-energy resonances and a slowly varying nonresonant component. Three new resonances at E_{p}=156.2, 189.5, and 259.7 keV have recently been observed and confirmed. However, significant uncertainty on the reaction rate remains due to the nonresonant process and to two suggested resonances at E_{p}=71 and 105 keV. Here, new ^{22}Ne(p,γ)^{23}Na data with high statistics and low background are reported. Stringent upper limits of 6×10^{-11} and 7×10^{-11} eV (90% confidence level), respectively, are placed on the two suggested resonances. In addition, the off-resonant S factor has been measured at unprecedented low energy, constraining the contributions from a subthreshold resonance and the direct capture process. As a result, at a temperature of 0.1 GK the error bar of the ^{22}Ne(p,γ)^{23}Na rate is now reduced by 3 orders of magnitude.