Background: Intracerebral hemorrhage has been associated with changes in various weather conditions. The primary aim of this study was to examine the collective influence of temperature, barometric pressure, and dew point temperature on the incidence of primary spontaneous intracerebral hemorrhage (sICH).
Methods: Between January 2013 and December 2016, patients with sICH due to hypertension or amyloid angiopathy with a known time of onset were identified prospectively. Meteorological variables 6 hours prior to time of onset were obtained from the National Oceanic Atmospheric Administration via two weather stations. Using a Monte-Carlo simulation, random populations of meteorological conditions in a 6-hour time window during the same years were generated. The actual meteorological conditions 6-hours prior to sICH were compared to those from the randomly generated populations. The false discovery rate method was used to identify significant meteorological variables.
Results: Time of onset was identified in 455 of 603 (75.5%) patients. Distribution curves for change in temperature, mean barometric pressure, and change in barometric pressure 6-hours prior to hemorrhage ictus were found to be significantly different from the random populations. (FDR approach P < .05). For a given change in temperature associated with intracerebral hemorrhage, mean barometric pressure was higher (1018 millibar (mb) versus 1016 mb, P = .03). Barometric pressure data was not influenced by variations in temperature.
Conclusions: We concluded that barometric pressure primarily influences the incidence of intracerebral hemorrhage. The association described in the literature between temperature and intracerebral hemorrhage is likely confounded by variations in barometric pressure.
Keywords: Intracerebral hemorrhage; barometric pressure; dew point temperature; temperature.
Copyright © 2018. Published by Elsevier Inc.