A popular modeling approach for competing risks analysis in longitudinal studies is the proportional subdistribution hazards model by Fine and Gray (1999. A proportional hazards model for the subdistribution of a competing risk. Journal of the American Statistical Association94, 496-509). This model is widely used for the analysis of continuous event times in clinical and epidemiological studies. However, it does not apply when event times are measured on a discrete time scale, which is a likely scenario when events occur between pairs of consecutive points in time (e.g., between two follow-up visits of an epidemiological study) and when the exact lengths of the continuous time spans are not known. To adapt the Fine and Gray approach to this situation, we propose a technique for modeling subdistribution hazards in discrete time. Our method, which results in consistent and asymptotically normal estimators of the model parameters, is based on a weighted ML estimation scheme for binary regression. We illustrate the modeling approach by an analysis of nosocomial pneumonia in patients treated in hospitals.
Keywords: Competing risks; Discrete time-to-event data; Regression modeling; Subdistribution hazard; Survival analysis.
© The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: [email protected].