Photocatalysis Enables Visible-Light Uncaging of Bioactive Molecules in Live Cells

Angew Chem Int Ed Engl. 2019 Jan 8;58(2):561-565. doi: 10.1002/anie.201811261. Epub 2018 Dec 13.

Abstract

The photo-manipulation of bioactive molecules provides unique advantages due to the high temporal and spatial precision of light. The first visible-light uncaging reaction by photocatalytic deboronative hydroxylation in live cells is now demonstrated. Using Fluorescein and Rhodamine derivatives as photocatalysts and ascorbates as reductants, transient hydrogen peroxides were generated from molecular oxygen to uncage phenol, alcohol, and amine functional groups on bioactive molecules in bacteria and mammalian cells, including neurons. This effective visible-light uncaging reaction enabled the light-inducible protein expression, the photo-manipulation of membrane potentials, and the subcellular-specific photo-release of small molecules.

Keywords: biocompatible reaction; mammalian cells; photocatalysis; uncaging reaction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Catalysis
  • Cells / metabolism*
  • Light
  • Photochemical Processes*