Deoxynivalenol Affects Cell Metabolism and Increases Protein Biosynthesis in Intestinal Porcine Epithelial Cells (IPEC-J2): DON Increases Protein Biosynthesis

Toxins (Basel). 2018 Nov 9;10(11):464. doi: 10.3390/toxins10110464.

Abstract

Deoxynivalenol (DON) is a toxin found in cereals as well as in processed products such as pasta, and causes substantial economic losses for stock breeding as it induces vomiting, reduced feeding, and reduced growth rates in piglets. Oxidative phosphorylation, TCA-cycle, transcription, and translation have been hypothesized to be leading pathways that are affected by DON. We used an application of high and low glucose to examine oxidative phosphorylation and anaerobic glycolysis. A change in the metabolic status of IPEC-J2 was observed and confirmed by microarray data. Measurements of oxygen consumption resulted in a significant reduction, if DON attacks from the basolateral. Furthermore, we found a dose-dependent effect with a significant reduction at 2000 ng/mL. In addition, SLC7A11 and PHB, the genes with the highest regulation in our microarray analyses under low glucose supply, were investigated and showed a variable regulation on protein level. Lactate production and glucose consumption was investigated to examine the impact of DON on anaerobic glycolysis and we observed a significant increase in 2000 blhigh and a decrease in 2000 aphigh. Interestingly, both groups as well as 200 blhigh showed a significant higher de novo protein synthesis when compared to the control. These results indicate the direct or indirect impact of DON on metabolic pathways in IPEC-J2.

Keywords: BONCAT; DON; IPEC-J2; cell metabolism; microarray analyses; oxygen; toxins.

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Animals
  • Cell Line
  • Epithelial Cells / drug effects*
  • Epithelial Cells / metabolism
  • Gene Expression Regulation / drug effects
  • Glucose / metabolism
  • Glycolysis
  • Intestines / cytology
  • Lactic Acid / metabolism
  • Oligonucleotide Array Sequence Analysis
  • Oxidative Phosphorylation
  • Oxygen Consumption
  • Protein Biosynthesis / drug effects*
  • Swine
  • Trichothecenes / toxicity*

Substances

  • Trichothecenes
  • Lactic Acid
  • Adenosine Triphosphate
  • Glucose
  • deoxynivalenol