Non-alcoholic fatty liver disease in underweight patients with inflammatory bowel disease: A case-control study

PLoS One. 2018 Nov 14;13(11):e0206450. doi: 10.1371/journal.pone.0206450. eCollection 2018.

Abstract

Non-alcoholic fatty liver disease (NAFLD) was shown to also occur in lean and underweight patients. So far, the prevalence of NAFLD in underweight individuals with and without inflammatory bowel disease (IBD) is insufficiently enlightened. In this cross-sectional age, gender and disease-matched case-control study, underweight patients (BMI<18.5 kg/m2) with inflammatory bowel disease (IBD), who underwent abdominal MRI at 1.5 T/3 T with fat-saturated fast-spin-echo imaging from 10/2005-07/2018 were analysed (control-to-case-ratio 1:1, n = 130). All patients were additionally investigated for duration, history of surgery, medical treatment, laboratory values, liver and spleen diameters. On MRI, liver fat was quantified by two observers based on the relative signal loss on T2-weighted fast spin-echo MR images with fat saturation compared to images without fat saturation. The prevalence of NAFLD/liver steatosis, defined as a measured intrahepatic fat content of at least 5%, was significantly higher in underweight IBD patients than in normal weight patients (87.6% versus 21.5%, p<0.001). Compared to the cases, the liver fat content of the controls was reduced by -0.19 units on average (-19%; 95%Cl: -0.20; -0.14). Similar results were obtained for the subgroup of non-IBD individuals (n = 12; -0.25 units on average (-25%); 95%Cl: -0.35; -0.14). Patients with extremely low body weight (BMI <17.5 kg/m2) showed the highest liver fat content (+0.15 units on average (+15%) compared to underweight patients with a BMI of 17.5-18.5 kg/m2 (p<0.05)). Furthermore, underweight patients showed slightly increased liver enzymes and liver diameters. There were no indications of significant differences in disease duration, type of medications or surgery between cases and controls and also, there were no significant differences between observers or field strengths (p>0.05). The prevalence of liver steatosis was higher among underweight IBD and non-IBD patients compared to normal weight controls. Also, underweight patients showed slightly increased liver enzymes and liver diameters, hinting at initial metabolic disturbances.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adipose Tissue / pathology
  • Adolescent
  • Adult
  • Body Weight
  • Case-Control Studies
  • Cross-Sectional Studies
  • Female
  • Humans
  • Inflammatory Bowel Diseases / complications*
  • Liver / pathology
  • Male
  • Middle Aged
  • Non-alcoholic Fatty Liver Disease / complications*
  • Non-alcoholic Fatty Liver Disease / pathology
  • Organ Size
  • Retrospective Studies
  • Spleen / pathology
  • Thinness / complications*
  • Young Adult

Grants and funding

MRM was funded by the Deutsche Forschungsgemeinschaft - SFB 1340/1 2018 and 5943/31/41. Funding was provided by BIH/Charité – Universitätsmedizin Berlin (DE) to LCA. BH has received research grants for the Department of Radiology, Charité – Universitätsmedizin Berlin from the following companies: 1. Abbott, 2. Actelion Pharmaceuticals, 3. Bayer Schering Pharma, 4. Bayer Vital, 5. BRACCO Group, 6. Bristol-Myers Squibb, 7. Charite research organisation GmbH, 8. Deutsche Krebshilfe, 9. Dt. Stiftung für Herzforschung, 10. Essex Pharma, 11. EU Programmes, 12. Fibrex Medical Inc., 13. Focused Ultrasound Surgery Foundation, 14. Fraunhofer Gesellschaft, 15. Guerbet, 16. INC Research, 17. lnSightec Ud., 18. IPSEN Pharma, 19. Kendlel MorphoSys AG, 20. Lilly GmbH, 21. Lundbeck GmbH, 22. MeVis Medical Solutions AG, 23. Nexus Oncology, 24. Novartis, 25. Parexel Clinical Research Organisation Service, 26. Perceptive, 27. Pfizer GmbH, 28. Philipps, 29. Sanofis-Aventis S.A, 30. Siemens, 31. Spectranetics GmbH, 32. Terumo Medical Corporation, 33. TNS Healthcare GMbH, 34. Toshiba, 35. UCB Pharma, 36. Wyeth Pharma, 37. Zukunftsfond Berlin (TSB), 38. Amgen, 39. AO Foundation, 40. BARD, 41. BBraun, 42. Boehring Ingelheimer, 43. Brainsgate, 44. PPD (Clinical Research Organisation), 45. CELLACT Pharma, 46. Celgene, 47. CeloNova BioSciences, 48. Covance, 49. DC Devices, Inc. USA, 50. Ganymed, 51. Gilead Sciences, 52. Glaxo Smith Kline, 53. ICON (Clinical Research Organisation), 54. Jansen, 55. LUX Bioseienees, 56. MedPass, 57. Merek, 58. Mologen, 59. Nuvisan, 60. Pluristem, 61. Quintiles, 62. Roehe, 63. Sehumaeher GmbH (Sponsoring eines Workshops), 64. Seattle Geneties, 65. Symphogen, 66. TauRx Therapeuties Ud., 67. Accovion, 68. AIO: Arbeitsgemeinschaft Internistische Onkologie, 69. ASR Advanced sleep research, 70. Astellas, 71. Theradex, 72. Galena Biopharma, 73. Chiltern, 74. PRAint, 75. lnspiremd, 76. Medronic, 77. Respicardia, 78. Silena Therapeutics, 79. Spectrum Pharmaceuticals, 80. St. Jude., 81. TEVA, 82. Theorem, 83. Abbvie, 84. Aesculap, 85. Biotronik, 86. Inventivhealth, 87. ISA Therapeutics, 88. LYSARC, 89. MSD, 90. novocure, 91. Ockham oncology, 92. Premier-research, 93. Psi-cro, 94. Tetec-ag, 94. Tetec-ag, 95. Winicker-norimed, 96. Achaogen Inc, 97. ADIR, 98. AstraZenaca AB, 99. Demira Inc, 100. Euroscreen S.A., 101. Galmed Research and Development Ltd., 102. GETNE, 103. Guidant Europe NV, 104. Holaira Inc., 105. Immunomedics Inc., 106. Innate Pharma, 107. Isis Pharmaceuticals Inc, 108. Kantar Health GmbH, 109. MedImmune Inc, 110. Medpace Germany GmbH (CRO), 111. Merrimack Pharmaceuticals Inc, 112. Millenium Pharmaceuticals Inc, 113. Orion Corporation Orion Pharma, 114. Pharmacyclics Inc, 115. PIQUR Therapeutics Ltd, 116. Pulmonx International Sárl, 117. Servier (CRO), 118. SGS Life Science Services (CRO), 119. Treshold Pharmaceuticals Inc. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.