Aims: To investigate the relationship between the miR-130a polymorphism rs731384 and coronary artery disease (CAD) and to further explore the molecular mechanism of the pathogenesis of CAD, an observational single-center study was conducted.
Method: A total of 876 subjects were recruited in the present study. Four milliliters of venous blood was drawn after 12 h of fasting to perform biochemical assays. CAD patients and controls were distinguished by coronary angiography. Rs731384 was genotyped on the Agena MassARRAY system according to the manufacturer's user guide. Statistical analysis was conducted using SPSS 16.0 software.
Results: The study found that the plasma levels of total cholesterol (TC) (P=0.006), low-density lipoprotein cholesterol (LDL-C) (P=0.030), apolipoprotein A (ApoA) (P=0.038), and apolipoprotein B (ApoB) (P=0.022) distributed differently in patients with various alleles. Additionally, the AA genotype of rs731384 was found to be a protective factor against CAD in a recessive model (AA:AG+GG, odds ratio (OR) = 0.408, 95% confidence interval (95% CI) = 0.171-0.973, P=0.043). A significant association was found between the gene-environment interaction and CAD risk. The AA genotype along with high-density lipoprotein cholesterol (HDL-C) level ≥ 1.325 mmol/l significantly decreased the CAD risk (AA:AG+GG, OR = 0.117, 95% CI = 0.023-0.588, P=0.009).
Conclusion: The mutant AA genotype of rs731384 seems to be a protective factor against CAD, and rs731384 plays an important role in the human metabolism of plasma lipids.
Keywords: Serum lipid; Single nucleotide polymorphism; coronary artery disease; miR-130a.
© 2018 The Author(s).