Antifungal Activity, Mode of Action, Docking Prediction and Anti-biofilm Effects of (+)-β-pinene Enantiomers against Candida spp

Curr Top Med Chem. 2018;18(29):2481-2490. doi: 10.2174/1568026618666181115103104.

Abstract

Aims: The objective of this study was to investigate the effectiveness of (+)-β-pinene inhibition on Candida spp. growth, aiming at elucidation of the mechanism of action; to determine fungal cell enzyme binding activity (through molecular docking simulations) and its effects on biofilm reduction.

Methods: Candida strains (n=25) from referenced and clinical origins, either susceptible or resistant to standard clinical antifungals, were tested for determination of Minimum Inhibitory Concentration (MIC); Minimum Fungicidal Concentration (MFC); and microbial death curves upon treatment with (+)-β-pinene; the effects of (+)-β-pinene on the cell wall (sorbitol assay), membrane ergosterol binding, and effects on biofilm were evaluated by microdilution techniques. We also evaluated the interactions between (+)-β-pinene and cell wall and membrane enzymes of interest.

Results: The MIC values of (+)-β-pinene ranged from <56.25 to 1800 µmol/L. The MIC of (+)-β-pinene did not increase when ergosterol was added to the medium, however it did increase in the presence of sorbitol, leading to a doubled MIC for C. tropicalis and C. krusei. The results of the molecular docking simulations indicated better interaction with delta-14-sterol reductase (-51 kcal/mol). (+)-β-pinene presents anti-biofilm activity against multiples species of Candida.

Conclusion: (+)-β-pinene has antifungal activity and most likely acts through interference with the cell wall; through molecular interaction with Delta-14-sterol reductase and, to a lesser extent, with the 1,3-β- glucan synthase. This molecule was also found to effectively reduce Candida biofilm adhesion.

Keywords: Antifungal agents; Candidiasis; Drug synergism; Molecular docking simulation; Products with antimicrobial action..

MeSH terms

  • Antifungal Agents / chemistry
  • Antifungal Agents / pharmacology*
  • Bicyclic Monoterpenes
  • Biofilms / drug effects
  • Bridged Bicyclo Compounds / chemistry
  • Bridged Bicyclo Compounds / pharmacology*
  • Candida / drug effects*
  • Microbial Sensitivity Tests
  • Molecular Docking Simulation
  • Monoterpenes / chemistry
  • Monoterpenes / pharmacology*
  • Stereoisomerism

Substances

  • Antifungal Agents
  • Bicyclic Monoterpenes
  • Bridged Bicyclo Compounds
  • Monoterpenes
  • beta-pinene