Poly(ADP-ribose) polymerase-1 (PARP-1) is a regulatory enzyme involved in many different processes of DNA and RNA metabolism, including DNA repair. Previously, PARP-1 was found capable of forming a covalent DNA-protein crosslink (DPC) at the apurinic/apyrimidinic (AP) site in double-stranded DNA. The C1´ atom of the AP site participates in Schiff base formation with a lysine side chain in PARP-1, and a covalent bond is formed upon reduction of the Schiff base. The PARP-1 DPC is formed in vivo where DPC formation correlates with AP site induction by a monofunctional alkylating agent. Here, we examined repair of PARP-1 DPCs in mouse fibroblasts and found that a proteasome inhibitor, MG-132, reduces repair resulting in accumulation of PARP-1 DPCs and increased alkylating agent cytotoxicity. Using a model DNA substrate mimicking the PARP-1 DPC after proteasomal degradation, we found that repair is completed by a sub-pathway of base excision repair (BER). Tyrosyl-DNA phosphodiesterase 1 was proficient in removing the ring-open AP site sugar at the phosphodiester linkage, leaving an intermediate for processing by other BER enzymes. The results reveal proteasomal degradation of the PARP-1 DPC is active in mouse fibroblasts and that a model repair intermediate is processed by the BER machinery.
Keywords: APE1 and base excision repair; PARP-1 DPCs; PNKP; TOP1; Tdp1; pol β.
Published by Elsevier B.V.