Antimicrobial peptides play a critical role in the barrier function of human skin. They offer a fast response to invading microorganisms and protect from external microbial infection. Here we show the isolation of the kallikrein-related peptidase inhibitor SPINK9 as a major antibacterial factor from healthy stratum corneum. In total, six N-terminal SPINK9 variants were identified in the stratum corneum. Whereas all variants exhibited similar inhibition activities against kallikrein-related peptidase, only three variants with either lysine or glutamine as their first N-terminal residues were able to kill various Escherichia coli strains, but not other bacteria or fungi. The killing activity also depended on the sequence essential for kallikrein-related peptidase inhibition. Ultrastructural electron microscopy analyses suggested that SPINK9 entered the cell and killed growing bacteria. A bacterial chaperone, SKP, was identified as the major SPINK9 interacting partner in E. coli cells. The Skp-deleted mutant was more sensitive to SPINK9 than the wild-type control, suggesting that the bactericidal activity of SPINK9 should first overcome the resistance from the bacterial chaperone SKP. Thus, SPINK9 is a member of epidermal antimicrobial peptides for selective killing of E. coli, which might contribute to the innate barrier function of human skin.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.