Purpose: Severe gastrointestinal (GI) toxicity is a common adverse effect following 5-fluorouracil (5-FU)-based chemotherapy treatment. The presence of severe GI toxicity leads to treatment revisions, sub-optimal therapy outcomes, and decreases to patients' quality of life. There are no adequate predictors for 5-FU-induced severe GI toxicity risk. The Toll-like receptor/interleukin-1 (TIR) domain innate immune signalling pathway is known to be a mediating pathway in the development of GI toxicity. Hence, genetic variability in this signalling pathway may alter the pathophysiology of GI toxicity and, therefore, be predictive of risk. However, little research has investigated the effects of TIR domain innate immune signalling pathway single nucleotide polymorphism (SNPs) on the risk and development of severe GI toxicity.
Methods: This critical review surveyed the literature and reported on the in vitro, ex vivo and in vivo effects, as well as the genetic association, of selected TIR domain innate immune signalling pathway SNPs on disease susceptibility and gene functioning.
Results: Of the TIR domain innate immune signalling pathway SNPs reviewed, evidence suggests interleukin-1 beta (IL1B) and tumour necrosis factor alpha (TNF) SNPs have the greatest potential as predictors for severe GI toxicity risk. These results warrant further research into the effect of IL1B and TNF SNPs on the risk and development of severe GI toxicity.
Conclusions: SNPs of the TIR domain innate immune signalling pathway have profound effects on disease susceptibility and gene functioning, making them candidate predictors for severe GI toxicity risk. The identification of a predictor for 5-FU-induced severe GI toxicity will allow the personalization of supportive care measures.
Keywords: 5-Fluorouracil (5-FU); Gastrointestinal (GI) toxicity; Genetic variant; Proinflammatory cytokines; Single nucleotide polymorphisms (SNPs); Toll-like receptors (TLRs).