LncRNA TATDN1 contributes to the cisplatin resistance of non-small cell lung cancer through TATDN1/miR-451/TRIM66 axis

Cancer Biol Ther. 2019;20(3):261-271. doi: 10.1080/15384047.2018.1529091. Epub 2018 Nov 27.

Abstract

Background: Chemoresistance has been considered to be a major obstacle for cancer therapy clinically. Long non-coding RNAs (LncRNAs) are asscociated with the development, prognosis and drug-resistance of non-small cell lung cancer (NSCLC). Whereas, the regulatory mechanism of lncRNA TATDN1 in the cisplatin resistance of NSCLC is still not clear.

Methods: The expression of TATDN1, miR-451 and TRIM66 in NSCLC tissues and cell lines were detected by qRT-PCR or western blot. Immunohistochemistry (IHC) assay was performed for the detection of TATDN1 expression profile. 88 patients who underwent cisplatin treatment were followed up to 60-months for the analysis of survival rate. MTT and Flow cytometry analysis were performed for the assessment of cell survival rate, proliferation and apoptosis. Bioinformatics, Dual-Luciferase reporter were employed to analyze the interaction among TATDN1, miR-451 and TRIM66. Xenograft tumor model was constructed to verify the role of TATDN1 in NSCLC treated with cisplatin (DDP) in vivo.

Results: TATDN1 and TRIM66 was significantly upregulated while miR-451 was downregulated in NSCLC tissues and cell lines, especially in DDP-resistant tumor tissues and cells. Survival rates of NSCLC patients with low TATDN1 expression were improved following DDP chemotherapy. TATDN1 upregulated TRIM66 expression via sponge for miR-451. Moreover, TATDN1 knockdown improved DDP-sensitivity in NSCLC patients by regulation of miR-451/TRIM66 axis. Finally, knockdown of TATDN1 improved the sensitivity of NSCLC to DDP in vivo.

Conclusions: TATDN1 enhanced the DDP-tolerance of NSCLC cells by upregulating TRIM66 expression via sponging miR-451, hinting a novel regulatory pathway of chemoresistance in DDP-tolerant NSCLC cells and providing a potential therapeutic target for NSCLC patients with DDP-reistance.

Keywords: DDP; NSCLC; TATDN1; TRIM66; cisplatin resistance; lncRNA; miR-451.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carcinoma, Non-Small-Cell Lung / genetics*
  • Carcinoma, Non-Small-Cell Lung / pathology
  • Cell Line, Tumor
  • Cisplatin / pharmacology*
  • Drug Resistance, Neoplasm
  • Humans
  • Immunohistochemistry
  • Intracellular Signaling Peptides and Proteins / genetics
  • Intracellular Signaling Peptides and Proteins / metabolism*
  • Lung Neoplasms / drug therapy*
  • Lung Neoplasms / genetics
  • Lung Neoplasms / metabolism
  • Lung Neoplasms / pathology
  • MicroRNAs / genetics
  • MicroRNAs / metabolism*
  • RNA, Long Noncoding / genetics
  • RNA, Long Noncoding / metabolism*
  • Transfection

Substances

  • Intracellular Signaling Peptides and Proteins
  • MIRN451 microRNA, human
  • MicroRNAs
  • RNA, Long Noncoding
  • TRIM66 protein, human
  • long non-coding RNA TATDN1, human
  • Cisplatin

Grants and funding

This study was granted by the Scientific Research Fund of Education Bureau in Yunnan province. (No. 2014Z070).