Multilineage-differentiating stress-enduring (Muse) cells exhibit the core characteristics of pluripotent stem cells, namely, the expression of pluripotency markers and the capacity for trilineage differentiation both in vitro and in vivo and self-renewability. In addition, Muse cells have unique characteristics not observed in other pluripotent stem cells such as embryonic stem cells, control of pluripotency by environmental switch of adherent suspension, symmetric and asymmetric cell division, expression of factors relevant to stress tolerance, and distinctive tissue distribution. Pluripotent stem cells were recently classified into two discrete states, naïve and primed. These two states have multiple functional differences, including their proliferation rate, molecular properties, and growth factor dependency. The properties exhibited by Muse cells are similar to those of primed pluripotent stem cells while with some uniqueness. In this chapter, we provide a comprehensive description of the basic characteristics of Muse cells.
Keywords: Bone marrow; Cluster; Connective tissue; DNA repair; Peripheral blood; Primed pluripotent; SSEA-3; Self-renewal; Suspension; Trilineage differentiation.