Objective: Resting-state functional MRI (rs-fMRI) represents a promising and cost-effective alternative to task-based fMRI for presurgical mapping. However, the lack of clinically streamlined and reliable rs-fMRI analysis tools has prevented wide adoption of this technique. In this work, the authors introduce an rs-fMRI processing pipeline (ReStNeuMap) for automatic single-patient rs-fMRI network analysis.
Methods: The authors provide a description of the rs-fMRI network analysis steps implemented in ReStNeuMap and report their initial experience with this tool after performing presurgical mapping in 6 patients. They verified the spatial agreement between rs-fMRI networks derived by ReStNeuMap and localization of activation with intraoperative direct electrical stimulation (DES).
Results: The authors automatically extracted rs-fMRI networks including eloquent cortex in spatial proximity with the resected lesion in all patients. The distance between DES points and corresponding rs-fMRI networks was less than 1 cm in 78% of cases for motor, 100% of cases for visual, 87.5% of cases for language, and 100% of cases for speech articulation mapping.
Conclusions: The authors' initial experience with ReStNeuMap showed good spatial agreement between presurgical rs-fMRI predictions and DES findings during awake surgery. The availability of the rs-fMRI analysis tools for clinicians aiming to perform noninvasive mapping of brain functional networks may extend its application beyond surgical practice.
Keywords: DES = direct electrical stimulation; GOF = goodness of fit; ICA = independent component analysis; LGG = low-grade glioma; QC = quality control; ReStNeuMap = resting-state neurosurgical mapping; brain mapping; brain surgery; diagnostic technique; functional magnetic resonance imaging; presurgical planning; resting state; rs-fMRI = resting-state functional MRI.