The conductive framework is generating considerable interest for lithium metal anodes to accommodate Li+ deposition, due to its ability to reduce electrode current density by increasing the deposition area. However, in most cases, the electroactive surface area is not fully utilized for the nucleation of Li in 3D current collectors, especially under high current densities. Herein, uniform nucleation of Li in the conductive skeleton is achieved by a two-step synergetic process arising from CuBr- and Br-doped graphene-like film. The modified electrode regulates Li nucleating in uniform pancake-like seeds and growing into a granular Li metal ascribed to the excellent lithiophilicity of CuBr- and Br-doping sites and the low Li diffusion barrier on the surface of generated LiBr, as confirmed by the experimental and computational results. Therefore, the modified anode endows small nucleation overpotential, a high-reversibility Li plating/stripping process, and excellent performance in full batteries with industrially significant cathode loading. This work suggests that a two-step cooperative strategy opens a viable route to the development of a Li anode with high reversibility for stable cycling Li metal batteries.