Drug resistance is one of the most intractable issues for successful treatment in current clinical practice. Although many mutations contributing to drug resistance have been identified, the relationship between the mutations and the related pharmacological profile of drug candidates has yet to be fully elucidated, which is valuable both for the molecular dissection of drug resistance mechanisms and for suggestion of promising treatment strategies to counter resistant. Hence, effective prediction approach for estimating the sensitivity of mutations to agents is a new opportunity that counters drug resistance and creates a high interest in pharmaceutical research. However, this task is always hampered by limited known resistance training samples and accurately estimation of binding affinity. Upon this challenge, we successfully developed Auto In Silico Macromolecular Mutation Scanning (AIMMS), a web server for computer-aided de novo drug resistance prediction for any ligand-protein systems. AIMMS can qualitatively estimate the free energy consequences of any mutations through a fast mutagenesis scanning calculation based on a single molecular dynamics trajectory, which is differentiated with other web services by a statistical learning system. AIMMS suite is available at http://chemyang.ccnu.edu.cn/ccb/server/AIMMS/.
Keywords: de novo; drug resistance prediction; protein mutants; web services.
© The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: [email protected].