Purpose: The significance of clinical and dosimetric risk factors in relation to chest wall (CW) injury after stereotactic body radiation therapy (SBRT) for lung tumors were analyzed through a meta-analysis of 57 published studies.
Methods and materials: Studies related to CW injury after lung SBRT were obtained through searching PubMed, Embase, and Cochrane electronic databases. An estimate of the incidence of CW pain (CWP) or rib fracture (RF) was derived using a Bayesian hierarchical model. Linear regression analysis was performed to assess the relationship between CWP or RF and clinical or dosimetric factors.
Results: A total of 57 studies incorporating 5985 cases reporting clinical data on CW injury after SBRT were analyzed. The overall CWP and RF rates by Bayesian hierarchical modeling were 11.0% (95% confidence interval [CI], 8.0-14.4) and 6.3% (95% CI, 3.7-9.7), respectively. The rates of grade ≥2 and grade ≥3 CWP were 6.2% (95% CI, 3.88-8.93) and 1.2% (95% CI, 0.48-2.12), respectively. Sex was significantly correlated with RF (P < .001), with female patients having a greater risk of RF than male patients (hazard ratio = 0.59; 95% CI, 0.46-0.76). No correlation was found between RF, grade ≥2 CWP, or grade ≥3 CWP, with the clinical and dosimetric factors of age, tumor size, origin of lung tumor, gross tumor volume, planning target volume, fractional dose, number of fractions, or biologically effective dose. However, tumor to CW distance (<16-25 mm), body mass index, maximum dose (Dmax) of 0.5 to 5 cm3, and the volume of CW or ribs receiving >30 Gy were significantly associated with CWP and RF.
Conclusions: The overall rates of RF and grade ≥2 CWP after thoracic SBRT are relatively low. Sex, tumor to CW distance, maximum dose, and the radiation exposure of the CW or ribs are factors associated with the risk of CW toxicity after SBRT.
Copyright © 2018 Elsevier Inc. All rights reserved.