ZnO nanoparticles of different sizes were functionalized with an amphipathic peptide, and its effect on nanoparticle stabilization and UV photoprotective activity was studied in this article. The peptide-modified nanoparticles exhibited lower aggregation, significant reduction in Zn2+ leaching in vitro and even inside the cells for smaller particle sizes, reduced photocatalytic activity, and reduced cellular toxicity under UV-B treated conditions. In addition, the peptide-modified 60 nm ZnO nanoparticles showed lower genotoxicity, lower oxidative stress induction levels, less DNA damage responses, and less immunogenic potential than the bare counterparts in the presence of UV-B rays. They localized more in the stratum corneum and epidermis ex vivo, indicating better retention in epidermis, and demonstrated improved UV-B protection and/or skin integrity in SKH-1 mice in vivo compared to unmodified nanoparticles and commercial UV-protective agents tested. To our knowledge, this is the first report on the application of peptide-modified ZnO nanoparticles for improved photoprotection.
Keywords: UV-B rays; ZnO nanoparticles; cell-penetrating peptide; cytotoxicity; photoprotection.