Atomically Thin Two-Dimensional Nanosheets with Tunable Spin-Crossover Properties

J Phys Chem Lett. 2018 Dec 20;9(24):7052-7058. doi: 10.1021/acs.jpclett.8b03298. Epub 2018 Dec 6.

Abstract

Combining the fascinating advantages of ultrathin two-dimensional (2D) nanosheets with the nanostructuration of spin-crossover (SCO) materials represents an attractive target of controlled fabrication of SCO nano-objects at the device level. Here, we demonstrate that through facile-operating ultrasonic force-assisted liquid exfoliation technology the three-dimensional (3D) van der Waals SCO bulk precursor {[Fe(1,3-bpp)2(NCS)2]2 (1, 1,3-bpp = 1,3-di(4-pyridyl)-propane)} can be exfoliated into single-layered 2D nanosheets (NS-1). As a consequence, the magnetism has been tuned from complete paramagnetic (bulk precursors) to SCO transition at around 250 K (2D nanosheets). In addition, the metal-to-ligand charge transition (MLCT), the intraligand π-π* transition and the color display also have been altered both in colloidal suspension and in the solid state. These dramatic changes of physical-chemical properties at different forms and states can be attributed to the efficient cooperativity derived from the interlayer van der Waals interactions within the curly or vertically stacked 2D building blocks.