Toll-like receptor 2 (TLR2) is currently investigated as a potential therapeutic target in diseases with underlying inflammation like sepsis and arthritis. We reported the discovery, by virtual screening and biological testing, of eight TLR2 antagonists (AT1-AT8) which showed TLR2-inhibitory activity in human cells (Murgueitio et al., 2014). In this study, we have deepened in the mechanism of action and selectivity (TLR2/1 or TLR2/6) of those compounds in mouse primary cells and in vivo. The antagonists reduced, in a dose-dependent way the TNFα production (e.g. AT5 IC50 7.4 μM) and also reduced the nitric oxide (NO) formation in mouse bone marrow-derived macrophages (BMDM). Treatment of BMDM with the antagonists showed that downstream of TLR2, MAPKs phosphorylation and IkBα degradation was reduced. Notably, in a mouse model of tri-acylated lipopeptide (Pam3CSK4)-induced inflammation, AT5 attenuated the TNFα and IL-6 inflammatory response. Further, the effect of AT5 in the stimulation of BMDM by the endogenous alarmin HMGB1 was investigated. Our results indicate that AT4-AT7 and, particularly AT5 appear as good starting points for the development of inhibitors targeting TLR2 in inflammatory disorders.
Keywords: Inflammatory cytokine; Sepsis; Small-molecule; TLR.
Copyright © 2018 Elsevier GmbH. All rights reserved.