Objective: Determine if LLP2A-Ale or PTH (1-34) affects the prevalence of glucocorticoid-induced osteonecrosis (ON) in a mouse model.
Methods: Eight-week-old young adult male BALB/cJ mice were weight-randomized into Control (Con), glucocorticoid (GC)-only, or concurrent treatments with GC and LLP2A-Ale (250 μg/kg or 500 μg/kg, IV, Days 1, 14, 28) or parathyroid hormone hPTH (1-34) (40 μg/kg, 5×/week). Mice were necropsied after 45 days for qualitative evaluation of prevalent ON and quantitative evaluation of vascularity in the distal femoral epiphysis (DFE); and quantitative evaluation of bone mass, microarchitecture, and strength in the distal femoral metaphysis and lumbar vertebral body.
Results: The prevalence of ON was 14% in the Con group and 36% in the GC-only group (P = 0.07). The prevalence of ON did not differ among GC-only, GC + LLP2A-Ale, and GC + PTH groups. GC-only mice had significantly lower trabecular and cortical bone strength than Con, while GC + LLP2A-Ale (500 μg/kg) and GC + PTH (1-34) groups had significantly greater trabecular bone strength than the GC-only group. GC + LLP2A-Ale (250 μg/kg and 500 μg/kg) and GC + PTH had significantly higher trabecular bone volume than GC-only mice at the vertebrae, distal femoral epiphyses and distal femoral metaphyses. DFE vascularity was lower in GC-only mice than in all other groups.
Conclusion: Neither LLP2A-Ale nor hPTH (1-34) reduced the prevalence of GC-induced ON, compared to GC-only mice. However, GC-treated mice given LLP2A-Ale or hPTH (1-34) had better bone mass, microarchitecture, and strength in trabecular-rich regions, and higher levels of vascularity than GC-only mice.
Keywords: Dexamethasone; Distal femoral epiphysis; LLP2A-Ale; Prevention; hPTH (1–34).