Evaluation of [68Ga]Ga-DOTA-TCTP-1 for the Detection of Metalloproteinase 2/9 Expression in Mouse Atherosclerotic Plaques

Molecules. 2018 Dec 1;23(12):3168. doi: 10.3390/molecules23123168.

Abstract

Background: The expression of matrix metalloproteinases 2/9 (MMP-2/9) has been implicated in arterial remodeling and inflammation in atherosclerosis. We evaluated a gallium-68 labeled peptide for the detection of MMP-2/9 in atherosclerotic mouse aorta. Methods: We studied sixteen low-density lipoprotein receptor deficient mice (LDLR-/-ApoB100/100) kept on a Western-type diet. Distribution of intravenously-injected MMP-2/9-targeting peptide, [68Ga]Ga-DOTA-TCTP-1, was studied by combined positron emission tomography (PET) and contrast-enhanced computed tomography (CT). At 60 min post-injection, aortas were cut into cryosections for autoradiography analysis of tracer uptake, histology, and immunohistochemistry. Zymography was used to assess MMP-2/9 activation and pre-treatment with MMP-2/9 inhibitor to assess the specificity of tracer uptake. Results: Tracer uptake was not visible by in vivo PET/CT in the atherosclerotic aorta, but ex vivo autoradiography revealed 1.8 ± 0.34 times higher tracer uptake in atherosclerotic plaques than in normal vessel wall (p = 0.0029). Tracer uptake in plaques correlated strongly with the quantity of Mac-3-positive macrophages (R = 0.91, p < 0.001), but weakly with MMP-9 staining (R = 0.40, p = 0.099). Zymography showed MMP-2 activation in the aorta, and pre-treatment with MMP-2/9 inhibitor decreased tracer uptake by 55% (p = 0.0020). Conclusions: The MMP-2/9-targeting [68Ga]Ga-DOTA-TCTP-1 shows specific uptake in inflamed atherosclerotic lesions; however, a low target-to-background ratio precluded in vivo vascular imaging. Our results suggest, that the affinity of gelatinase imaging probes should be steered towards activated MMP-2, to reduce the interference of circulating enzymes on the target visualization in vivo.

Keywords: atherosclerosis; imaging; matrix metalloproteinase; plaque; positron emission tomography.

MeSH terms

  • Animals
  • Autoradiography
  • Biomarkers, Tumor* / chemistry
  • Disease Models, Animal
  • Female
  • Gallium Radioisotopes* / chemistry
  • Heterocyclic Compounds, 1-Ring* / chemistry
  • Immunohistochemistry
  • Male
  • Matrix Metalloproteinase 2 / genetics
  • Matrix Metalloproteinase 2 / metabolism*
  • Matrix Metalloproteinase 9 / genetics
  • Matrix Metalloproteinase 9 / metabolism*
  • Mice
  • Mice, Knockout
  • Plaque, Atherosclerotic / diagnostic imaging*
  • Plaque, Atherosclerotic / metabolism*
  • Plaque, Atherosclerotic / pathology
  • Positron Emission Tomography Computed Tomography*
  • Radiopharmaceuticals / chemistry
  • Tissue Distribution
  • Tumor Protein, Translationally-Controlled 1

Substances

  • Biomarkers, Tumor
  • Gallium Radioisotopes
  • Heterocyclic Compounds, 1-Ring
  • Radiopharmaceuticals
  • Tpt1 protein, mouse
  • Tumor Protein, Translationally-Controlled 1
  • 1,4,7,10-tetraazacyclododecane- 1,4,7,10-tetraacetic acid
  • Gallium-68
  • Matrix Metalloproteinase 2
  • Matrix Metalloproteinase 9