Background: Doublesex (dsx), the downstream gene in the insect sex-determination pathway, is a key regulator of sexually dimorphic development and behavior across a variety of insects. Manipulating expression of dsx could be useful in the genetic control of insects. However, information on the sex-specific function of dsx in non-model insects is lacking.
Results: In this work, we isolated a dsx homolog, which is alternatively spliced into six female-specific and one male-specific isoforms, from an important agricultural pest, the black cutworm, Agrotis ipsilon. Studies on the expression of sex-specific Aidsx mRNA during embryonic development showed that the sixth hour post oviposition is the key stage for sex determination in A. ipsilon. Functional analysis of Aidsx was conducted using a CRISPR/Cas9 system targeting female- and male-specific Aidsx exons. Disruptions of sex-specific Aidsx exons resulted in sex-specific, sexually dimorphic defects in external genitals, gonads and antennae, and expression of sex-specific genes as well as production of offspring in both sexes.
Conclusion: Our results not only demonstrate that dsx is a key player determining A. ipsilon sexually dimorphic traits, but also provide a potential method for the genetic control of this pest. © 2018 Society of Chemical Industry.
Keywords: CRISPR/Cas9; antennae; doublesex; genetic pest control; gonads.
© 2018 Society of Chemical Industry.