Directed evolution has advanced into a standard industrial "tool" to tailor naturally occurring proteins for a variety of biotechnological applications, thus enabling product valorization and bringing societal benefits across industrial sectors. Examples are sustainable enzymatic production processes for chemicals, pharmaceuticals, or applications in the food, feed, and laundry industries. In essence, directed evolution has contributed to sustainable industrial processes that fuel the transition from a fossil-based economy to a biobased economy utilizing renewable resources. Phage display technologies represent a comparable breakthrough that allow for the directed evolution of binding proteins by physical coupling between a phenotype and the respective genotype, thus enabling the identification of highly selective antibodies for a broad variety of applications in diagnostics and therapy.
Keywords: Nobel Prize; directed evolution; high-throughput screening; protein engineering; random mutagenesis.
© 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.