An RK/ST C-Terminal Motif is Required for Targeting of OEP7.2 and a Subset of Other Arabidopsis Tail-Anchored Proteins to the Plastid Outer Envelope Membrane

Plant Cell Physiol. 2019 Mar 1;60(3):516-537. doi: 10.1093/pcp/pcy234.

Abstract

Tail-anchored (TA) proteins are a unique class of integral membrane proteins that possess a single C-terminal transmembrane domain and target post-translationally to the specific organelles at which they function. While significant advances have been made in recent years in elucidating the mechanisms and molecular targeting signals involved in the proper sorting of TA proteins, particularly to the endoplasmic reticulum and mitochondria, relatively little is known about the targeting of TA proteins to the plastid outer envelope. Here we show that several known or predicted plastid TA outer envelope proteins (OEPs) in Arabidopsis possess a C-terminal RK/ST sequence motif that serves as a conserved element of their plastid targeting signal. Evidence for this conclusion comes primarily from experiments with OEP7.2, which is a member of the Arabidopsis 7 kDa OEP family. We confirmed that OEP7.2 is localized to the plastid outer envelope and possesses a TA topology, and its C-terminal sequence (CTS), which includes the RK/ST motif, is essential for proper targeting to plastids. The CTS of OEP7.2 is functionally interchangeable with the CTSs of other TA OEPs that possess similar RK/ST motifs, but not with those that lack the motif. Further, a bioinformatics search based on a consensus sequence led to the identification of several new OEP TA proteins. Collectively, this study provides new insight into the mechanisms of TA protein sorting in plant cells, defines a new targeting signal element for a subset of TA OEPs and expands the number and repertoire of TA proteins at the plastid outer envelope.

Keywords: Arabidopsis; Chloroplast; Outer envelope protein; Plastid; Tail-anchored protein; Targeting signal.

MeSH terms

  • Arabidopsis / genetics
  • Arabidopsis / metabolism*
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism*
  • Chloroplasts / genetics
  • Chloroplasts / metabolism
  • Plastids / genetics

Substances

  • Arabidopsis Proteins