Microcystin-LR (MC-LR) is a potent cyanobacterial toxin responsible for animal and human poisonings worldwide. MC-LR is found in organisms throughout the foodweb, however there is conjecture regarding whether it biomagnifies. Few studies have investigated how MC-LR interacts with lipid membranes, a determinant of biomagnification potential. We tested whether 1 μM MC-LR irreversibly associates with lipid bilayers or causes the creation of pore defects upon short and long-term exposure. Using tethered bilayer lipid membranes (tBLMs), we observed an increase in membrane conduction in tBLMs, representing an interaction of microcystin-LR with the lipid bilayer and a change in membrane packing properties. However, there were minimal changes in membrane capacitance upon short and long-term exposure, and MC-LR exhibited a rapid off-rate. Upon 24 h exposure to the toxin, no lipophilic multimeric complexes were detected capable of altering the toxin's off-rate. There was no evidence of the creation of new pores. This study demonstrates that MC-LR does not irreversibly imbed itself into lipids membranes after short or long-term exposure and suggests MC-LR does not biomagnify through the food web via lipid storage.
Keywords: Biomagnification; Cyanobacteria; Microcystin-LR; Tethered bilayer lipid membrane.
Copyright © 2018 Elsevier Ltd. All rights reserved.