Background: Diffusion-weighted magnetic resonance imaging (DW-MRI) of skeletal muscle has the potential to be a sensitive diagnostic and/or prognostic tool in complex, enigmatic neuromusculoskeletal conditions such as spinal cord injury and whiplash associated disorder. However, the reliability and reproducibility of clinically accessible DW-MRI parameters in skeletal muscle remains incompletely characterized - even in individuals without neuromusculoskeletal injury - and these parameters have yet to be characterized for many clinical populations. Here, we provide normative measures of the apparent diffusion coefficient (ADC) in healthy muscles of the lower limb; assess the rater-based reliability and short- and long-term reproducibility of the ADC in the same muscles; and quantify ADC of these muscles in individuals with motor incomplete spinal cord injury.
Methods: Twenty individuals without neuromusculoskeletal injury and 14 individuals with motor incomplete spinal cord injury (SCI) participated in this investigation. We acquired bilateral diffusion-weighted MRI of the lower limb musculature in all participants at 3 T using a multi-shot echo-planar imaging sequence with b-values of 0, 100, 300 and 500 s/mm2 and diffusion-probing gradients applied in 3 orthogonal directions. Outcome measures included: (1) average ADC in the lateral and medial gastrocnemius, tibialis anterior, and soleus of individuals without neurological or musculoskeletal injury; (2) intra- and inter-rater reliability, as well as short and long-term reproducibility of the ADC; and (3) estimation of average muscle ADC in individuals with SCI.
Results: Intra- and inter-rater reliability of the ADC averaged 0.89 and 0.79, respectively, across muscles. Least significant change, a measure of temporal reproducibility, was 4.50 and 11.98% for short (same day) and long (9-month) inter-scan intervals, respectively. Average ADC was significantly elevated across muscles in individuals with SCI compared to individuals without neurological or musculoskeletal injury (1.655 vs. 1.615 mm2/s, respectively).
Conclusions: These findings provide a foundation for future studies that track longitudinal changes in skeletal muscle ADC of the lower extremity and/or investigate the mechanisms underlying ADC changes in cases of known or suspected pathology.
Keywords: Diffusion-weighted imaging; Magnetic resonance imaging; Skeletal muscle; Spinal cord injury.