Photonic crystals for nano-light in moiré graphene superlattices

Science. 2018 Dec 7;362(6419):1153-1156. doi: 10.1126/science.aau5144.

Abstract

Graphene is an atomically thin plasmonic medium that supports highly confined plasmon polaritons, or nano-light, with very low loss. Electronic properties of graphene can be drastically altered when it is laid upon another graphene layer, resulting in a moiré superlattice. The relative twist angle between the two layers is a key tuning parameter of the interlayer coupling in thus-obtained twisted bilayer graphene (TBG). We studied the propagation of plasmon polaritons in TBG by infrared nano-imaging. We discovered that the atomic reconstruction occurring at small twist angles transforms the TBG into a natural plasmon photonic crystal for propagating nano-light. This discovery points to a pathway for controlling nano-light by exploiting quantum properties of graphene and other atomically layered van der Waals materials, eliminating the need for arduous top-down nanofabrication.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't