Mesangial cell (MC) activation and macrophage infiltration are 2 major events closely related with each other in mesangial proliferative glomerulonephritis. In the anti-Thy 1 nephritis model, macrophages mediate the damage and also the expansion of mesangium through secreting various inflammatory factors; however, in glomerular microenvironment how MCs affect macrophage activity in the presence of various stimuli have not yet been understood. In the present study, we found that resting human MCs (HMCs) constitutively expressed chemokine [C-C motif] ligand 2 (CCL-2) and interleukin (IL)-6 and induced M2 polarization of macrophages in the coculture system. HMC proliferation and migration and expression of IL-6, CCL-2, and macrophage colony-stimulating factor in HMCs were enhanced after platelet-derived growth factor (PDGF)-BB stimulation, among which CCL-2 was responsible for inducing the M2 polarization of macrophages. Furthermore, PDGF-BB-stimulated HMCs alleviated the classical activation of macrophages and drove more intensified M2 polarization of macrophages than resting HMCs did. However, lipopolysaccharide and interferon-γ (IFN-γ) stimulated HMCs maintained the M1 phenotype of cocultured macrophages. In conclusion, MCs actively participated in glomerular inflammation through influencing macrophage polarization. The interplay between MCs and infiltrated macrophages is finely modulated by secretory factors such as PDGF-BB and IFN-γ in response to the renal inflammatory microenvironment.
Keywords: IFN-γ; PDGF-BB; coculture; inflammation; macrophage polarization; mesangial cell activation.