A stretchable and bendable all-solid-state pseudocapacitor with dodecylbenzenesulfonate-doped polypyrrole-coated vertically aligned carbon nanotubes partially embedded in PDMS

Nanotechnology. 2019 Mar 1;30(9):095401. doi: 10.1088/1361-6528/aaf135. Epub 2018 Nov 15.

Abstract

We present an all-solid-state flexible and stretchable pseudocapacitor composed of dodecylbenzenesulfonate-doped polypyrrole (PPy(DBS))-coated vertically aligned carbon nanotubes (VACNTs) partially embedded in a polydimethylsiloxane (PDMS) substrate. VACNTs are grown via atmospheric-pressure chemical vapor deposition on a Si/SiO2 substrate and transferred onto PDMS. Then, the PPy(DBS) film is coated with a surface charge of 300 mC cm-2 on individual carbon nanotubes (CNTs) via electropolymerization. The partial embedment of VACNTs in PDMS permits a rapid and facile integration of the PPy(DBS)/CNTs/PDMS structure to construct a flexible and stretchable supercapacitor electrode. The measured capacitance is 3.6 mF cm-2 with a PVA-KOH gel electrolyte at a scan rate of 100 mV s-1, which is maintained under stretching from 0% to 150% and bending/twisting angles from 0° to 180°. This all-solid-state stretchable supercapacitor shows a stable galvanostatic performance during 10 000 charge/discharge cycles with its capacitance retained at 109%.