Beyond Koopmans' theorem: electron binding energies in disordered materials

J Phys Condens Matter. 2019 Jan 30;31(4):043001. doi: 10.1088/1361-648X/aaf130. Epub 2018 Nov 15.

Abstract

The topical review focuses on calculating ionization energies (IE), or electronic polarons in quasi-particle terminology, in large disordered systems, e.g. for a solute dissolved in a molecular solvent. The simplest estimate of the ionization energy is provided by one-electron energies in the Hartree-Fock theory, but the calculated quantities are not accurate. Density functional theory as many-body theory provides a principal opportunity for calculating one-electron energies including correlation and relaxation effects, i.e. the true energies of electronic polarons. We argue that such a principal possibility materializes within the concept of optimally tuned range-separated hybrid functionals (OT-RSH). We describe various schemes for optimal tuning. Importantly, the OT-RSH scheme is investigated for systems capped with dielectric continuum, providing a consistent picture on the QM/dielectric boundary. Finally, some limitations and open issues of the OT-RSH approach are addressed.