Antrodia salonea (AS), a fungus that is indigenous to Taiwan has been well known for its anti-cancer properties. We investigated the anti-metastatic and anti-epithelial-mesenchymal transition (EMT) properties of AS in TNBC cells. To determine their EMT and metastasis levels, in vitro wound healing, wound invasion, Western blotting, RT-PCR, luciferase activity and immunofluorescence assays were performed, while the in vivo anti-metastatic efficacy of AS was evaluated in BALB/c-nu mice through bioluminescence imaging, HE staining, and immunohistochemical staining. MDA-MB-231 cells, when treated with AS concentrations (25-100 μg/mL) resulted in significant reduction of invasion and migration as well as the downregulation of VEGF, uPAR, uPA and MMP-9 (inhibition of PI3K/AKT/NFκB pathways). AS treatment prevented morphological changes and reversed EMT through the upregulation of E-cadherin and the downregulation of N-cadherin, Slug, Twist, and Vimentin. Inhibition of Smad3 signaling pathway, downregulation of β-catenin pathway and upregulation of GSK3β expression were also observed while, suppression of metastasis and EMT in TGF-β1-stimulated non-tumorigenic MCF-10A cells was observed when treated with AS. Histological analysis confirmed that AS reduced tumor metastasis and upregulated E-cadherin expression in biopsied lung tissues. Our results indicated that AS exhibits anti-EMT and anti-metastatic activity, that could contribute to develop anticancer drugs against TNBC.
Keywords: Antrodia salmonea; EMT; Metastasis; Triple-negative breast cancer; Wnt/β-catenin.
Copyright © 2018. Published by Elsevier Ltd.