Pancreatic stem/progenitor cells convert from a proliferative to a differentiated fate passing through proliferation cease to a resting state. However, the molecular mechanisms of cell cycle arrest are poorly understood. In this study, we demonstrated that the microRNA-124a (miR-124a) inhibited the proliferation of pancreatic progenitor cells both in vitro and ex vivo and promoted a quiescent state. The miR-124a directly targeted SOS Ras/Rac guanine nucleotide exchange factor 1 (SOS1), IQ motif-containing GTPase-activating protein 1 (IQGAP1), signal transducer and activator of transcription 3 (STAT3), and cyclin D2 (CCND2), thereby inactivating epidermal growth factor receptor (EGFR) downstream signaling pathways including mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK), phosphatidylinositol 3-kinase-protein kinase B (PI3K/AKT) and Janus kinase (JAK)/STAT3. miR-124a blocked cell proliferation mainly through targeting STAT3 to inhibit PI3K/AKT and JAK/STAT3 signaling. Moreover, miR-124a expression was negatively regulated by EGFR downstream PI3K/AKT signaling. These results indicated that miR-124a and EGFR signaling mutually interact to form a regulating circuit that determines the proliferation of pancreatic progenitor cells.
Keywords: EGFR; cell cycle arrest; miR-124a; pancreatic progenitor cells; signal transduction.
© 2018 Wiley Periodicals, Inc.