Dopamine Cells Differentially Regulate Striatal Cholinergic Transmission across Regions through Corelease of Dopamine and Glutamate

Cell Rep. 2018 Dec 11;25(11):3148-3157.e3. doi: 10.1016/j.celrep.2018.11.053.

Abstract

The balance of dopamine and acetylcholine in the dorsal striatum is critical for motor and learning functions. Midbrain dopamine cells and local cholinergic interneurons (ChIs) densely innervate the striatum and have strong reciprocal actions on each other. Although dopamine inputs regulate ChIs, the functional consequences of dopamine neuron activity across dorsal striatal regions is poorly understood. Here, we find that midbrain dopamine neurons drive pauses in the firing of dorsomedial ChIs but robust bursts in dorsolateral ChIs. Pauses are mediated by dopamine D2 receptors, while bursts are driven by glutamate corelease and activation of a mGluR-mediated excitatory conductance. We find the frequency of muscarinic cholinergic transmission to medium spiny neurons is greater in the dorsomedial striatum. This regional variation in transmission is moderated by the different actions of dopamine and glutamate corelease. These results delineate a mechanism by which dopamine inputs maintain consistent levels of cholinergic activity across the dorsal striatum.

Keywords: GPCR; Parkinson’s disease; accumens; basal ganglia; dopamine; mGluR; metabotrophic; striatum.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Acetylcholine / metabolism
  • Action Potentials
  • Animals
  • Cholinergic Neurons / metabolism*
  • Corpus Striatum / physiology*
  • Dopamine / metabolism*
  • Dopaminergic Neurons / metabolism*
  • Glutamic Acid / metabolism*
  • Interneurons / metabolism
  • Mesencephalon / metabolism
  • Mice, Inbred C57BL
  • Receptors, Dopamine D2 / metabolism
  • Receptors, Metabotropic Glutamate / metabolism
  • Synapses / metabolism
  • Synaptic Transmission / physiology*

Substances

  • Receptors, Dopamine D2
  • Receptors, Metabotropic Glutamate
  • Glutamic Acid
  • Acetylcholine
  • Dopamine