The rapid developments of gene therapy are benefit from the construction of efficient gene vectors, which help therapy genes efficiently overcome the barriers in the transport and transfection. Condensing DNA into nanoparticles is a crucial role in gene transfection, and the electrostatic interactions of synthetic cationic liposomes and cationic polymers with DNA are generally used for condensing DNA. Recent research has shown that the introduction of the hydrophobic interaction, hydrogen bonding, and coordinative interactions to the gene delivery vectors is also very important for DNA condensation, delivery, and transfection. This review focuses on the four types of interactions in condensed DNA nanoparticles, which could provide a new perspective for improving gene transfection efficacy.