Background: Antimicrobial peptides (AMP) play a pivotal role in innate host defense and in immune response. The delineation of new MS-based profiling tools, which are able to produce panels of AMP of the nasal fluid (NF), may be attractive for the discovery of new potential diagnostic markers of respiratory disorders.
Methods: Swabs collected NF from healthy patients and from patients with respiratory disorders. We used a fast procedure based on mesoporous silica particles (MPS) to enrich NF in its AMP component in combination with MALDI-TOF/TOF MS as a key tool for rapidly analyzing clinical samples.
Results: Reproducible MS peptide fingerprints were generated for each subject and several AMP were detected including (Human Neutrophil Peptides) HNPs, Statherin, Thymosin-β4, Peptide P-D, II-2, β-MSP, SLPI, Lysozyme-C, and their proteo-forms. In particular, Statherin, Thymosin-β4, and Peptide P-D were accurately identified by direct MS/MS sequencing. Examples of applicability of this tool are shown. AMP fingerprints were obtained before and after a nasal polypectomy as well as before and post-treatment with azelastine/fluticasone in one case of allergic rhinitis.
Conclusion: The potential of our platform to be implemented by new mesoporous materials for capturing a wider picture of AMP might offer an amazing opportunity for diagnostic clinical studies on individual and population scales.
Keywords: MALDI-TOF MS; antimicrobial peptides; biomarker; biomarkers; enrichment; mass spectrometry; nasal fluid; nasal polyposis; peptidomics; precision medicine.