Previous studies suggest that schizophrenia-related visual perceptual abnormalities are primarily attributed to deficits of the dorsal rather than ventral visual pathway. In this study, we comparatively explored changes in dorsal and ventral networks in schizophrenia patients in both static and dynamic functional connectivity (FC). Resting-state MR scans were acquired for forty schizophrenia patients and twenty-four healthy controls matched for age and gender. The dorsal and ventral visual networks were defined based on the resultant coordinates from activation likelihood estimation analyses. Static and dynamic network properties were calculated based on the full-range and segmented blood oxygen level dependent time series, respectively. The results indicated that the ventral and dorsal visual networks exhibited abnormalities in static FC and dynamic FC, respectively, in the schizophrenia group. Static FC assessments in the ventral visual network showed a significantly decreased clustering coefficient and shortened characteristic path length in patients with schizophrenia. Dynamic FC assessments in the dorsal visual network showed significantly higher mean temporal variability (p = 0.026) and higher regional FC variability of the right fusiform gyrus (p < 0.001) in patients with schizophrenia, and the latter was correlated with the total and negative scores of the Positive and Negative Syndrome Scale. In summary, this study reveals differential patterns of connectivity abnormalities of the ventral and dorsal visual networks in patients with schizophrenia. These preliminary evidences may help us better interpret the mechanisms underlying visual perceptual impairments in patients with schizophrenia and their relationship with psychosis.
Keywords: Dorsal pathway; Dynamic functional connectivity; Schizophrenia; Ventral pathway.
Copyright © 2019 Elsevier B.V. All rights reserved.